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1. Introduction

Recent advances in the capabilities of algorithms have led to a surge of investigations into the
economics of automation technologies. An important, open question is the effect of these
technologies on earnings inequality. Researchers have approached this question using both
macroeconomic and microeconomic methods. In this paper, we are interested in what can
and cannot be learned from the microeconomics.1

Specifically, we focus on the microeconomics of automation experiments: studies that
use exogenous variation in the availability of a technology to estimate productivity effects.
These experiments are valuable because they yield internally valid estimates (typically, in
partial equilibrium) and providemanagers and policymakers information about technologies
at a relatively high frequency. In order to estimate inequality effects, experimenters often
test whether the technology increases the output of higher- or lower-skilled workers with
the same job.2 In June of 2025, The Economist summarized the inequality effects from the
automation experiments to date: “Although early studies suggested that lower performers could
benefit ... newer studies look at more complex tasks... In these contexts, high performers benefit far
more than their lower-performing peers,” which implies that the skill level of the workforce is
an important feature and suggests a future of skill-biased technical change, as implied by the
article’s title “How AI will Divide the Best from the Rest,” (The Economist 2025).

But what exactly do we learn if we see an automation experiment lead to more, or less,
inequality?What features of theworkforce are relevant to the inequality effect? If a technology
increases inequality now, will it continue to increase inequality as it becomes more capable?

To answer these sort of questions, we introduce a model in the task-based tradition;
output is increasing in task-level inputs. However, unlike many macroeconomic models of
task-based production, we explicitly model jobs as production functions at the individual level.
Individual workers are defined by their endowments of skill in each task, whichmotivates our
focus on a feature of the workforce that is rarely highlighted: the correlation of workers’ skills
across tasks. This correlation describes, for example, whether the most analytical physicians
are also the most empathetic, or whether the best fielder on the baseball team is also the
best batter.

We are focused on the context of short-term automation experiments, in which the
1The macroeconomic work typically asks: after general equilibrium effects play out, will the new distribution

of jobs and earnings be less or more unequal? The answer appears often is that technologies that reduce demand
for certain types of labor in the short run may increase demand for that labor in the long run, and vice-versa.
For overviews covering historical and current waves of automation, see: Katz and Autor (1999); Acemoglu and
Autor (2011); Acemoglu and Restrepo (2019).

2For examples of automation trials that report inequality results, see: Noy and Zhang (2023); Chen and Chan
(2024); Choi, Monahan, and Schwarcz (2024); Kreitmeir and Raschky (2024); Cui et al. (2025); Brynjolfsson, Li, and
Raymond (2025); Dell’Acqua et al. (2025); Kanazawa et al. (2025); Kim et al. (2025); Otis et al. (2025); Roldán-Monés
(2025).
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sample population is held fixed. The model allows for either either positive or negatively
correlated skills among workers. Automation technologies can perform one (or more) of the
tasks in production, and a technology’s capability may be below or above a given workers’
skill. Workers are assumed to have rational expectations over whether using a technology
will improve their performance.3

The model provides clear predictions about the change in inequality (i.e., the difference
in output between worker types) given a marginal increase in an automation technology’s
capability. Even in simple settings with only two tasks, perfect skill correlations, and single-
task automaton, we obtain results that may seem counter-intuitive at first, but become very
clear through the lens of the model. Changes in inequality do not depend on the absolute
level of workers skill, as the The Economist quote above implies or as intuition might suggest.
It is the interaction of skill correlation and technological capability that determines the
inequality effect.

For example, consider two samples of workers with identical, two-task CES production
functions and identical task-level skill distributions. In one sample, skills are positively
correlated across workers and in the other they are negatively correlated. Here, an increase
in the capability of a technology that automates one task can decrease inequality in one sample
while increasing inequality in the other.

Figure 1 illustrates this case. In Panel A, skills are positively correlated and in Panel B skills
are negatively correlated. However, the cases are otherwise identical: the same distribution
of total productivity across workers, and the same distribution of individual abilities. Still, as
the figure illustrates, a marginal increase in automation technology will have very different
effects on inequality across the pair of cases.

In the positive skill correlation case, as automation technology improves from an initial
capability of zero, the first user will be the low type. However, in the negative correlation case
either type may use the technology first – in this example, the high-type benefits first from
task 1 technology improvements. Thus, at least initially, the low type will benefit first and
inequality will decrease in the Panel A case. But the high type will benefit first and inequality
will increase in the Panel B case.

A second result is that the inequality effect need not be monotonic in the automation
technology’s capability. Continuing with the example in Figure 1 Panel A, let’s again focus
on Task 1 automation. As just noted, the low type will be the initial users, which decreases
inequality initially. However, once the technology’s capability surpasses the high type’s skill
and the high type begin usage, output differences will be governed by differences in Task
2 skills. Now, since the high type is more skilled at Task 2 (and tasks are complementary),

3This assumption is not innocuous, as some automation experiments do find workers to perform worse than
placebo when given access to generative algorithms (Dell’Acqua et al. 2025; Otis et al. 2025), which suggests the
presence of biased beliefs.
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FIGURE 1
Initial Changes in Output after Automation

(A) Positive skill correlation
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Note: Plots isoquants of production possibilities, highlighting the isoquant for a worker
with higher output (Hi) and a worker with lower output (Lo) in two scenarios, where task-
level skills are positively correlated (Panel A) or negatively correlated (Panel B). Workers
pre-automation endowments are shown by the black circles. If a task-specific automation
technology is made available and the technology’s capability exceeds the workers skill
endowment, they will use the technology, which will shift them to a new production
frontier as shown by the arrows. For illustrative purposes, the first worker to benefit from
automation of a given task is highlighted.

inequality will increase as the Task 1 automation technology improves.
Allowing for more than one task to be automated yields additional results. One is that the

shortest path to equality is when automation improvements are balanced across tasks. This
motivates the potential importance of a diversity of technological advances when it comes to
the pursuit of equality. But importantly, “equality” in our model is only possible due to two
key assumptions: (i) workers are homogeneous with respect to the non-automatable skills;
and (ii) we allow for the possibility that technologies’ capabilities surpass all workers. The
reality of these assumptions (or the timeline on which they might occur) is debatable, so
automation may ultimately still lead be inequality in practice.

While several dynamics are possible, ours is not an “anything goes”model.When informa-
tion is available about workers’ task-level skills and the relative capability of the automation
technology, our model can be use for predicting or extrapolating inequality effects. It is
designed to be useful for researchers, organizations, managers and policymakers as they
design and interpret automation experiments.

While we focus on partial equilibrium and microeconomics, our model suggests new
insights into the macroeconomics of automation. In particular, the model’s focus on skill
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correlations emphasizes the importance of understanding whether the “experiment” is
occurring at the job-, organization-, sectoral-, or societal-level.

Existing theory and data provide some guidance on when and where we should expect
skill correlations to be positive or negative. We discuss this in the latter portion of the paper
and report some country-level skill correlations (based on SAT scores) from the US National
Longitudinal Survey of Youth (BLS (2024)). While cognitive skills are consistently positively
correlated at the social level, cognitive and physical skills are often negatively correlated. We
also apply Kremer’s (1993) O-ring model of production to show why skills may be negatively
correlated within firms even if they are positively correlated in the population.

After a brief literature review below, the paper is organized as follows: Section 2 lays
out the model in detail; Section 3 derives results from the model; Section 4 connects our
theoretical results to evidence on skill correlations across the economy and how the level of
aggregation (e.g., firms versus populations) has an effect on these correlations; and Section 5
concludes with a discussion of our model’s implications, limitations, and possible extensions.

Related Literature

Our paper builds on research on the productivity impact of emerging technologies, most
notably, generative algorithms, theories that model jobs as multi-task production functions,
and the broader economics of automation.

Generative Algorithms and Inequality. Table 1 summarizes recent automation experiments
that have estimated inequality effects due to generative algorithms. As the table shows,
findings are decidedly mixed.

Our theoretical framework helps rationalize these seemingly inconsistent findings. Given
the rapid pace of algorithmic progress, experimental results at one point in timemay not pre-
dict effects as technologies continue to advance. Moving forward, experiments that measure
not only productivity effects but also: task-level skill distributions among the sample; which
types use the technology most intensively; and the technology’s capability relative to worker
skills will provide more robust guidance for anticipating distributional consequences.

Jobs as Production Functions. We are not the first to treat jobs as production functions. One
close example is Autor and Handel (2013; see their Eq. 2), which models job-level output as
an exponential function of workers’ task-level skills and job-task-specific elasticities. There,
the focus is not on automation, but rather on predicting job-level sorting. Deming (2017)
measures the relationship of workers’ math and social skills to wages, finding that they
are complementary in production. But he does not focus on the implications of different
correlations in these skills across workers. Dessein and Santos (2006) also consider jobs
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TABLE 1
Inequality Results in Recent Automation Experiments

job methodology inequality
effect

Brynjolfsson, Li, and Raymond (2025) Customer support Natural Experiment ↓

Chen and Chan (2024) Ad copywriting RCT ↓

Choi, Monahan, and Schwarcz (2024) Legal work RCT ↓

Cui et al. (2025) Coding RCT ↓

Dell’Acqua et al. (2025) Consulting RCT ↓

Kanazawa et al. (2025) Taxi driving Natural Experiment ↓

Maršál and Perkowski (2025) Banking RCT ↓

Noy and Zhang (2023) Professional writing RCT ↓

Kim et al. (2025) Investment analysis RCT ↑

Otis et al. (2025) Entrepreneurship RCT ↑

Roldán-Monés (2025) Debating RCT ↑

Notes: Summarizes recent automation experiments involving generative algorithms. Stud-
ies are sorted based onwhether they find automation to decrease (↓) or increase (↑) inequal-
ity, whether they use a formal randomized controlled trial (RCT) or a natural experiment,
and then alphabetically.

as bundles of tasks, although the focal question is how organizations endogenously decide
which tasks are bundled together. Our model’s highlighting of task-level correlation in skills
should prove useful in future work using worker-level production functions, specifically,
and the division of labor more generally (e.g., Becker and Murphy 1992; Autor, Levy, and
Murnane 2003). We review empirical studies of skill correlations later in Section 4.1.

Automation in General. Related work in the broader economics of automation includes
Athey, Bryan, and Gans (2020), who develop a framework for optimal delegation between
humans and algorithms, and Xu et al. (2025), who study how generative algorithms affects
organizational structure and the allocation of tasks within firms. Trammell (2025) focuses on
the automation of tasks when there is learning-by-doing in a sequence of tasks that constitute
the workflow for a job. There is also an emerging stream focused on the design of human-
technology collaborations (e.g., Kleinberg et al. 2018; Mullainathan and Obermeyer 2022;
Agarwal et al. 2024; Agarwal, Moehring, and Wolitzky 2025). Regarding the macroeconomics
of automation and inequality, Katz and Autor (1999), Acemoglu and Autor (2011), and Ace-
moglu and Restrepo (2019) provide comprehensive overviews of how technological change
affects the wage structure through general equilibrium channels. More recently, Autor and
Thompson (2025) examine how generative algorithms affect the returns to expertise, while
Garicano and Rayo (2025) studies implications for training and apprenticeship.
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Our partial equilibrium approach abstracts from general equilibrium effects in order
to isolate the direct productivity channel, which yields predictions about which workers
benefit from automation in the short run before labor markets adjust. This is the relevant
experimental context and the focus of this paper.However, a natural extension of ourmodel is
to embed it into leading general equilibriummodels of automation (e.g., Zeira 1998; Acemoglu
and Restrepo 2018) to predict longer-term and general equilibrium effects.

2. Model

Here, we outline our model of jobs as production functions and the automation of tasks. The
tasks of the production functions and the skills of workers are exogenous and fixed. This
short-run, partial-equilibrium view reflects the format of most automation experiments,
given their pursuit of internal validity.

2.1. Jobs as Production Functions

There is a single job where each worker i produces a non-negative quantity of some output Y .
The job involves a set of tasks t = {1, 2, ...,T}, and workers’ output is a function of their vector
of skills in each task. Implicitly, workers inelastically supply a unit of effort towards each task.
In the Appendix, we allow for workers to endogenously supply their labor such that time-
on-task depends on both their skill levels and the automation technology’s capability. While
this complicates the analysis, it does not impact our key results.4Workers are differentiated
by their task-specific skills Sit > 0. Since labor is inelastic, we can describe each worker’s
exogenous (job-specific) skill endowment across tasks as a vector Si = (Si1, ..., SiT).

Output is produced according to a general CES production function:

Yi = (∑
t
αtS

ρ
it)

1/ρ
where ρ =

σ − 1
σ
≤ 1 , σ ≥ 0 , ∑

t
αt = 1 , (1)

where σ is the job-specific elasticity of substitution, and αt are the task-specific input shares.
While most jobs contain more than two tasks, in the context of automation experiments,

it is useful to partition all tasks into two groups: one set that may jointly delegated to the new
technology, and another set that may not be delegated. Therefore, we simplify our production
function to two tasks (T = 2). Skill levels are normalized so each task has equal input shares

4In other words, in the baseline model, output is a function of the worker’s skill along each dimension, not any
endogenous effort decisions. Still, the result of time-on-task being stable will be chosen to be fixed endogenously
in a Cobb-Douglas setting if technology is interpreted as multiplying rather than substituting for worker skill. We
thank Phil Tramell for this last point.
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(αt = 1/2). This simplifies the production function to:

Yi = (
1
2
(Sρi1 + S

ρ
i2))

1/ρ
. (2)

For some results, we focus on the edge case of ρ → 0, which yields the familiar Cobb-
Douglas production function:

Yi = (Si1 × Si2)
1/2 . (3)

In Appendix A, we consider the case where workers’ labor supply is not fixed. Specifically,
we focus on the Cobb-Douglas case and introduce a convex cost of effort that pins down
workers’ optimal choices given their skills and, in the case of an automation experiment, the
capability of the technology. This of course changes the specific values involved, but all of
the qualitative results we derive below persist. Thus, endogenizing workers’ effort choices
yields no significant insights beyond the simpler case of a fixed, inelastic labor supply.5

2.2. Automation Experiments

Wemodel automation experiments as the exogenous offering of a technology that can auto-
matically perform a task. We denote the capability of the automating technology for task t as
At ≥ 0. As an input, the automating technology may be worse, equal to, or better than labor
(i.e., At ⋚ Sit). We assume that workers have rational expectations about the technology’s
capability; thus, i will rationally choose to use it if At > Sit and not use it otherwise.

The production function with single-task automation becomes:

Yi = (
1
2
(max(Sit,At)

ρ
+ Sρit−))

1/ρ
. (4)

where t is the task being automated and t− is the other task. When we consider cases where
both tasks are being automated, we will use the max function for both tasks.

2.3. Skill Correlations

We consider the two limit cases for the skill correlation structure, both in which there is
ex-ante (pre-experiment) differences in output levels. There are two groups of workers:
those with initially high output (i = Hi) and those with initially low output (i = Lo).6 Table 2
summarizes our negative and positive correlation cases, noting that we use the variables C

5Future work that endogenizes the creation of new tasks by the worker may prove fruitful.
6This binary categorization is simple, and it reflects the common empirical exercise of proxying for workers’

skills using their pre-experiment output levels to divide them into two groups (e.g., Noy and Zhang 2023; Chen and
Chan 2024; Choi, Monahan, and Schwarcz 2024; Cui et al. 2025; Brynjolfsson, Li, and Raymond 2025; Dell’Acqua
et al. 2025; Kanazawa et al. 2025; Kim et al. 2025; Otis et al. 2025; Roldán-Monés 2025).
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and B to describe the workers comparative and/or absolute advantages, where 1 < C < B.7

TABLE 2
Skill Correlation Scenarios —Worker (i) and Job Task (t)

positive corr. negative corr.
t = 1 t = 2 t = 1 t = 2

i = Hi B BC B 1
i = Lo 1 C 1 C

Notes: Reports the values of workers’ task-specific skills for the positive and negative
correlation cases; 1 < C < B. Therefore,without loss of generality, in thenegative correlation
case skill at task 1 is more dispersed.

2.4. Inequality Measures and Effects

There are many ways to measure inequality. In practice, one of the most common ways
worker-level output inequality is evaluated is simply the first difference in output levels
between workers. The change in inequality is estimated by testing whether workers with
high initial output levels (pre-automation) benefit more or less than workers with low initial
output levels. If those initially high-output workers benefit more, inequality is said to have
increased, and vice versa. Thus, we define ∆ as:

∆ ≡ YHi(At) − YLo(At) ,

which provides our “first-difference” measure of inequality. Below, we’ll also investigate
the absolute value of ∆ as a measure of inequality that is agnostic as to the source of the
differences. This leads us to our main (partial equilibrium) effect of interest:

∂∆/∂At ,

which describes how the output gap between workers of groups H and L changes as automa-
tion technologies are introduced and/or improved.8

As we discussed in the introduction, many automation experiments motivate a focus on
∂∆/∂At with concerns about long-run general equilibrium effects. This is clearly heroic in the
absence of a structural model. Estimating the general equilibrium impact of a technology on
inequality requires understanding not only the direct productivity effect of a technology on

7Note this analytical setup differs slightly from the data-generating process used to produce Figure 1. There,
the focus was on ease of visual understand, and here the focus is on analytical tractability.

8Note that we may normalize the initial productivity of either group to 1, making this linear difference also
interpretable as a percentage difference.
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worker output, but also elasticities of substitution across types of worker output, and many
other elasticities (e.g., workers changing jobs, or employers changing the task composition
of jobs).

Moremodestly, onemight hope to naively extrapolate from the context of one experiment
to another related one: For example, if a given technology reduces productivity inequality
in a given firm, it might be expected to have a monotonic effect as the inequality increases.
Equally plausibly, it might have a similarly signed (short term, partial equilibrium) effect
when deployed in a new sample population.

Formally, the first inference could be stated as an assumption that ∂∆/∂At is constant, or
at least the same sign, as At increases or samples change. We investigate the first imputation
by solving for the second derivative, ∂2∆/∂A2.

To further explore heterogeneity, we also solve for the ways in which the inequality effect
depends on: (i) how large the absolute advantage of the high-type workers is, ∂2∆/∂A∂(B/C);
and (ii) how substitutable the two tasks are in the production function, ∂2∆/∂A∂ρ.

Furthermore, we’ll investigate the case where both tasks may be automated and illustrate
how the effect of inequality jointly depends on the capabilities of the two technologies,
∂2∆/∂A1∂A2.

Sometimes in our model a technology can be powerful enough to flip the initially lower-
type worker to being more productive than the high-type worker. This is possible in the
negative correlation case, when task one (the task the high-type is initially better at) reaches
a high level of automation quality. Because of this possibility, we also focus our attention on
the absolute value of ∆:

∣∆∣ ≡ ∣YHi(At) − YLo(At)∣ .

Across the literature, other commonmetrics of inequality include statistics such as the
coefficient of variation or the Gini coefficient. These metrics typically involve a scaling of
absolute differences by some measure of aggregate levels.9 This scaling is useful for making
comparisons across contexts, since it converts absolute values into relative magnitudes.
However, since we will always be considering the same context in theory, we will rely on our
simpler measures.

9For example, in our setting, the coefficient of variation is simply: ∣YHi−YLo∣/(YHi+YLo); and theGini coefficient
is simply the coefficient of variation divided by 2.
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3. Model Results

3.1. Single-task Automation

3.1.1. Cobb-Douglas Case

We begin with a focus on the simple case of Cobb-Douglas production and single-task au-
tomation. Figure 2 reports the results visually. It visualizes inequality as a function of the
correlation in workers’ skills (per panel), which task is automated (per line color), and the
capability of the automation technology (per the x-axis).

FIGURE 2
Inequality and Single-task Automation — Cobb-Douglas Production

(A) Positive skill correlation (B) Negative skill correlation

Note: Plots the level of inequality across the two groups of workers assuming Cobb-Douglas
production per first-difference inequality (∆; solid line) or absolute inequality (∣∆∣; dashed
line) depending on skill correlations, the task being automated, and the capability of the
technology.

A first result the figure illustrates is that when workers’ skills are positively correlated, ∆
must be weakly greater than zero. Equivalently, ∆ and ∣∆∣ align. In other words, when skills
are positively correlated, there is no possibility for technology to “boost” the low-types above
the high types. This intuitive result holds in the general CES case.

On the other hand, Figure 2 Panel A also shows that, regardless of whether task 1 or
2 is automated, there will be a non-monotonic relationship between inequality and the
automation technology’s capability. First inequality declines, then it increases. Initially, when
first introduced, automation helps the low type “catch-up” to the high-output type. This is
because the technology’s capability is greater than the low type (so, the low type uses the
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tool), but lower than the high type (so, the high type relies on their own skill). But later,
the technology is better than both types, and the high-type’s absolute advantage in the non-
automated task becomes the key determinant of output differences and inequality grows
due to the complementarity in the tasks. In short, when skills are positively correlated, low-
capability partial automation helps the low-types to catch up; but high-capability automation
allows the high-type to shine.

In the case of negatively correlated skills, visualized in Panel B, the results are strikingly
different. Here, the effect of single-task automation ismonotonic in first-difference inequality
for both tasks. When the task the high-skill are better at is automated, the measure decreases.
But when the task the low-skill is better at is automated, the high-skill pull farther away.

However, in the special case of negatively correlated skills where the skill the high-type
is better at is being automated, the reduction in ∆ is so extreme, the measure can turn
negative. In this case, the effect on absolute inequality is non-monotonic: a certain point,
more better automation of the skill that the low-types are worse at increases their lead
over the ex-ante high-types (see Figure 2B). This divergence of first-difference and absolute
inequality highlights the importance of tracking workers over time. Cross-sectional analyses
of automation experiments may reveal no change in inequality while masking a major re-
ordering of workers.

The specific points at which these non-monotonic switches in inequality occur will be
context-specific. But overall, the simple Cobb–Douglas case clearly illustrates how improve-
ments in automation may increase or decrease output inequality depending on the workers’
skill correlations and the capability of the technology relative to each workers’ skills. Further-
more, as we show in Appendix A, this non-monotonicity persists in a model where task-level
labor supply is endogenous.

3.1.2. General CES Results

Table 3 generalizes these results to the CES production function. The table reports the signs
of first and second derivatives of absolute inequality with respect to automation capability,
providing a more complete picture of when and why automation’s inequality effects may
reverse.

In all cases, the sign of this second derivative with respect to the technology’s capability
(∂2∣∆∣/∂A2) is opposite to the sign of the first derivative, which stems from the concavity of
the production function.10 This matters for practice: a firm piloting automation today may
observe inequality changing, and even before the dramatic non-monotonicity occurs, the
rate of change in inequality will decline.

10Except at kinks (i.e. the quality level where a technology first becomes worth using for a group) where the
second derivative is undefined.
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TABLE 3
Absolute Inequality and Automation

technology tech.
capability sign ∂∣∆∣

∂A sign ∂2∣∆∣
∂A2

sign ∂2∣∆∣
∂A∂B/C sign ∂2∣∆∣

∂A∂ρ

Panel (A): Negative skill correlation
A1 1 < A1 < A∗ (−) (+) 0 (+)

A1 A∗ < A1 (+) (−) 0 (−)

A2 1 < A2 < C (+) (−) (+) (−)

A2 C < A2 (+) (−) 0 (−)

Panel (B): Positive skill correlation
A1 1 < A1 < B (−) (+) 0 a

(±)
a

A1 B < A1 (+) (−) (+) (−)

A2 C < A2 < BC (−) (+) 0 (−)

A2 BC < A2 (+) (−) (+) (−)

Notes: Reports the sign of the first and second derivatives of the absolute inequality effect
(∂∣∆∣) for the general CES production function with automation depending on whether
workers’ skills are negatively correlated (Panel a) or positively correlated (Panel b). A∗ =
(Bρ + 1 − Cρ)1/ρ. (±)a: sign is positive if A < C and negative if C < A < B.

The cross-derivatives with respect to the high-type’s skill advantage (∂2∣∆∣/∂A∂B/C) reveal
a few instances where initial skill gaps can amplify automation’s inequality effects. In the
negative skill correlation case, the skill gap (B/C) plays no role in the inequality effect of
automation. However, this derivative is positive in the positive correlation case once tech-
nology’s capabilities exceeds both workers’ skills — a larger pre-existing skill gap means
automation will increase inequality more sharply. For organizations considering automa-
tion, this implies that the same technology will have different distributional consequences
depending on how heterogeneous the workforce is to begin with. A narrow skill distribution
may mute inequality changes; a wide distribution may amplify them.

The cross-derivatives with respect to task complementarity (∂2∣∆∣/∂A∂ρ) indicate whether
automation’s effect on inequality is amplified or not in jobs with more substitutable tasks
(ρ→ 1). In the case of negative skill correlation, task substitutability behaves just as the second
derivative; more substitutability mutes the inequality effect. With positively correlated skills,
the cross derivative is negative for most technological capabilities, which amplifies inequality
effects at low capability levels but depresses them at higher capability levels.

Practically, these comparative statics tell us that predicting automation’s inequality effects
requires knowing not just current worker skills and technology capabilities, but also the
job’s production structure and the trajectory of technological improvement. Perhaps most
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strikingly, the across all cases the comparative static of improving technology’s capabilities
for a single task at a time all reveals that the effect of sufficiently super-human ability at a
given task (i.e., At →∞)must be to increase inequality.

3.2. Full Automation

Returning to the Cobb-Douglas formulation for simplicity, Figure 3 extends the analysis
to consider automation of both tasks, revealing how the task composition of automation
technologies shapes inequality outcomes. Each panel plots absolute inequality compared
to the pre-automation period as a function of both technologies’ capabilities. The contrast
between panels highlights how skill correlations determine not just whether inequality rises
or falls, but which combinations of technologies prove most equalizing.

In both cases, there is convergence to zero inequality when automation is sufficiently
advanced; however, we note again the fact that ourmodel assumes workers are homogeneous
with respect to non-automatable tasks (since there are none in our model). This is an impor-
tant abstraction. Until the economy achieves full automation, there will be non-automated
tasks, so the “equality” we arrive at should be understood as representing the amount of
irreducible inequality determined by all non-automatable tasks.11

With that caveat in mind, Figure 3 reveals the asymmetric paths to equality. When au-
tomation advances differentially across tasks, inequality remains or grows — the technology
portfolio is unbalanced relative to workers’ skill distributions. This illustrates how the bal-
ance of technological capabilities is relevant to inequality. As more tasks are automated, the
dimensionality along which workers differ shrinks, and inequality increasingly reflects skill
differences in the remaining non-automated tasks.

With positive correlation (see Figure 3A), much of the capability space involves decreases
in inequality compared to pre-automation periods. Effectively, technologies are always help-
ing the low type catch up. Only if the task 2 technology has very low capability and task 1
technology has very high capability can inequality exceed the pre-automation period.

Withnegative correlation (see Figure 3B), there is amuchgreater opportunity for increases
in inequality. The intuition follows from the single-task results: when skills are negatively
correlated, different workers are disadvantaged in different tasks, so equalizing outcomes
requires helping both types of workers. A technology suite that is very capable in task 1
helps low-types, leaving low-types’ comparative advantage in task 2 intact, which remains a
(potential) source of inequality.

11This might represent the desire for human-in-the-loop involvement for its own sake. Alternatively, if humans
are not endowed with any essentially non-automatable skills (i.e. allowing for complete automation of the
occupation), inequality will be zero or undefined, depending on precise definition.
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FIGURE 3
Absolute Inequality and Multi-task Automation — Cobb-Douglas Production

(A) Positive skill correlation (B) Negative skill correlation

Note: Plots the level of absolute inequality (∣∆∣) compared to the initial, pre-automation
level of absolute inequality (defined here as: ∣∆0∣) depending on skill correlations and
the capability of both automation technologies. The results here assume Cobb-Douglas
production, and the orange areas indicate regions where neither technology has been
adopted (i.e., ∣∆∣ = ∣∆0∣).

3.2.1. Limits and the Long Run

Automation technologies are anticipated to improve considerably, so a natural case to con-
sider is what happens in the limit as these technologies become arbitrarily powerful. As
specified above, our model has clear implications for this limit: if only a portion of a job
can be automated, then as the automation becomes more powerful inequality will increase
among workers doing that same job. Alternatively, if all parts are automated, inequality will
be eliminated.

However, in ourmodel (and the vastmajority ofmodels of production functions) there are
no bounds on the returns to inputs. That is, output is strictly increasing in task-level inputs for
infinite levels of inputs.12 However, in many practical settings of interest, it may be the case
that effective skill at one component of a job may be capped. In practice, the nature of the job
may be such that, beyond some maximum input level, output is no longer increasing in one
or both inputs.13 This would overturn our results that single-task automation is ultimately

12To be clear, this is the norm in theoretical analyses as it prevents any discontinuities in the production
function.

13For example, if the worker is a plumber that repairs homes, there may be a practical limit as to how the
plumbers’ physical skills translate into value for a homeowner — one plumber may be stronger than another, but
if a bolt connecting two pipes can only be tightened so much, then additional strength yields no additional value.
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inequality-increasing (as shown in Figure 2 and Table 3). For instance, consider a Cobb-
Douglas job with two tasks where technology is automating task 2, but there is a cap on the
returns to that task:

Yi = (Si1,max(max(Si2,A2),S2))
1/2

,

where S2 indicates the point beyond which additional task-2 skill (from the worker) or ca-
pability (from the technology) yields no additional output. In this case, the ultimate sign of
the inequality effect as technological capabilities improve is undetermined since it depends
on the relative magnitudes of S2 and A2 (compared to workers’ skill levels and correlations).
For example, in our case of positive skill correlation, if C < S2 < BC, then the high type have
already hit the cap on returns to task-2 input levels, so improvements in A2 will only ever
reduce inequality. In this example, when C < A2 < S2, improvements in the technology raise
the low type’s output but leave the high type’s output unchanged (inequality is reduced), but
then once S2 ≤ A2, technology improvements have no effect on inequality.

Another case to consider: itmay be that a job’s productivity is unbounded in it’s arguments,
but the technological progress necessary for automation to progress may take some time.14

However, it is important to point out that we take no stance on how long said improvements
may take. The long run in our model could be months, years, decades, or centuries – which
makes a focus on the non-asymptotics of our model equally or more empirically relevant.
Still, our framework emphasizes that it is not the absolute capability of the technology that is
relevant, rather it is the technology’s capability relative to the skill levels of different workers.
It is when technologies cross certain thresholds based on workers’ skill levels that influence
the sign of inequality effects from automation (e.g., the B, B × C and B/C points flagged in
Figure 2).

4. Skill Correlations

The previous section highlighted the importance of understanding skill correlations in
the workforce of interest. Here, we review the empirical studies that have estimated skill
correlations (Section 4.1), present new evidence on the distribution of skill correlations
across sectors (Section 4.2), and show how positive assortative matching in an O-ring model
of production (i.e., Kremer 1993) can generate negative skill correlations within firms even
when the population exhibits a positive skill correlation (Section 4.3).

14To continue the above example, perhaps sufficiently advanced robotic plumbers truly could be “unboundedly”
valuable to a homeowner.
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4.1. Existing Estimates of Skill Correlations

At least since Willis and Rosen (1979), it has been appreciated that a single index of workers’
skill will abstract away from important variation in the labor supply. However, empirical esti-
mates of workers’ skills on specific types of tasks remains a challenging pursuit. Approaches
to date typically involve accessing confidential data, intense measurement, or the estimation
of structural models of labor supply.

Most studies examining multi-dimensional skills have focused on aggregate categories:
cognitive skills, social skills, and manual skills. While these categories may be much broader
than the connotation of the “tasks” in our model, the logic is the same. Furthermore, these
studies generally focus on large populations of workers (e.g., national statistics).

Broadly speaking, among these three categories of skills, cognitive and social skills show
the most positive correlation. Estimates of the correlation in these skills spans from ap-
proximately 0.1 up to 0.7 (Mayer, Roberts, and Barsade 2008; Baker et al. 2014; Deming 2017;
Guvenen et al. 2020; Lise and Postel-Vinay 2020; Girsberger, Koomen, and Krapf 2022; Bárány
and Holzheu 2025). Cognitive and manual skills exhibit negative to weakly positive correla-
tions, roughly in the range of –0.4 to 0.1 (Lindenlaub 2017; Lise and Postel-Vinay 2020; Bárány
and Holzheu 2025). Social and manual skills consistently show the most negative correla-
tions of these categories, on the scale of –0.4 to –0.6 (Lise and Postel-Vinay 2020; Girsberger,
Koomen, and Krapf 2022; Bárány and Holzheu 2025). Within the cateogry of cognitive skills,
data persistently reveal a strong positive correlation, for example, of approximately 0.7 across
mathematical skills and literacy (or verbal) skills (Hampf, Wiederhold, andWoessmann 2017;
Guvenen et al. 2020; Woessmann 2024).

4.2. SAT Score Correlations across the Economy

As noted above, prior work has generally found mathematical and verbal skills to be pos-
itively correlated per standardized tests. A common source of data used is the National
Longitudinal Survey of Youth (NLSY), which reports participants’ SAT scores for verbal and
math components separately (BLS 2024). Here, we also make use of this data, but report
the math-verbal skill correlation separately for alternative industries and occupations. We
use the most commonly listed industry and occupation codes for all employed individuals.
The public data yield 1,618 observations with both math and verbal SAT scores as well as
non-missing industry and occupation codes.15

15For simplicity and to preserve sample size, we aggregate the industries and occupations into levels slightly
broader than listed in the data. SATs are graded out of 800 for each of the two components. For confidentiality,
the scores are aggregated into 100 point bins in the public data, which are what we use in this analysis. All
correlations are reported per the inclusion of the NLSY97 sample weights, although this makes little practical
difference.
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Overall, math and verbal SAT scores in our sample exhibit a correlation of 0.61, which is
squarely in-line with the estimates summarized in the previous subsection. But our primary
goal is to shed some initial light on portions of the economy where skills (at least per this
metric) may be more or less correlated.

FIGURE 4
Math and Verbal SAT Score Correlations across the Economy

(A) Across
Industries

(B) Across
Occupations

(C) Across
Industry×Occupations

Note: Plots the correlation of individuals’ SAT scores on the verbal and math components
from the NLSY97. Panels (A–B) plot average correlations at the industry- (Panel A) or
occupation-level (Panel B). Panel (C) plots the distribution of correlations averaged at the
industry-occupation-level.

Figure 4 highlights that the strength of the math-verbal score correlation varies signifi-
cantly across the economy.

Workers in some place exhibit a tight link between these skills, with estimated corre-
lations approaching 0.8 (e.g., professional and administrative services, food preparation,
cleaning and building services). While in other places the association is much more modest,
on the order of 0.3 to 0.5 (e.g., information sector, legal services). At the granular level of
industry–occupation pairs, we find substantial dispersion in math–verbal correlations (see
Panel C).

Notably, we do not observe any industry and/or occupation where the correlation is esti-
mated to be negative. Still, our model suggests that the the heterogeneity in skill correlations
across the economywould also imply heterogeneous effects of automation on inequality. That
is, a single automation technology deployed in these different sectors could yield significantly
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different changes in inequality.
More speculatively, the uniformly positive correlations help reconcile the fact that, as

of this paper, the majority of automation experiments are documenting inequality declines.
Presently, many of the technologies in question are both: (i) not yet “super-human” in that
they are better than the worst workers, but not better than the best workers; and (ii) focused
on cognitive tasks, in particular, connected to software. Combined with positive (cognitive)
skill correlations, our model predicts an inequality reduction in this scenario.

However, the positive math-verbal skill correlations we document here reflect sorting
into broad economic sectors and may mask negative correlations at finer levels of analysis
within firms or teams where complementary specialization drives task allocation.

4.3. An O-RingModel with Two Tasks

The evidence in the prior section describe skill correlations at the population and occupa-
tional levels. However, the focus of many, if not most, automation experiments narrowly
focus on a single occupation at a single firm, or possibly evenmore narrowly defined business
units and jobs. In this section, we make the point that the skill correlations within these
sample populations may be very different than the population overall.

In order to forecast how worker sorting could lead aggregate skill correlations to diverge
from those within an experimental sample, we extend Kremer’s (1993) O-ring model. Specifi-
cally, we consider the O-ring model when production involves two tasks, unlike the original,
single-task model. The model set up is the same as described in Section 2, augmented with
additional assumptions to incorporate worker sorting and firm-level production.

The main result of this model is that skills must be negatively correlated within a firm or
team no matter the population correlation in these skills. The intuition is straightforward.
The O-Ring model assumes that output is complementary in the different inputs to a team,
firm, or country. This leads to perfect associative matching in ability across teams or firms:
the best teams can’t afford any weak links, the least productive firms can’t afford higher
quality workers. Firms in the middle hire mediocre workers. In our extension, workers’
quality is a function of their ability in multiple skills. Because the only ways for a worker to
be mediocre overall is to be good at one task but bad at another, or to be mediocre at both,
this yields our main finding.

We visualize this intuition in Figure 5. Each productivity isoquant represents both a
worker productivity level and a firm type (because all workers at a given firmmust have the
same productivity level). We plot a pair of high-type workers working at a high-type firm, and
a pair of low type workers working at a low-type firm. In the given example, if we assume
each node has the same population of workers, the negative correlation in skills within firms
occurs despite the fact that there is a positive correlation in skills overall.
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FIGURE 5
Skill Correlations and Assortative Matching

Task 1

Task 2

Lo1

Lo2

Hi1

Hi2

Lo-firm

Hi-firm

Note: Plots isoquants of production possibilities, highlighting the isoquant for workers with
higher (Hi) or lower output (Lo). Workers are chosen to illustrate a scenario where skills
are positively correlated in the population (including all four workers). Since there are
only two types of workers (and each type exists on the same isoquant), positive assortative
matching in the context of two-worker firms will generate a negative within-firm skill
correlation.

Generally, the fact that isoquants are weakly downard-sloping requires weakly negative
skill correlations in the presence of positive assortative matching.16

In the remainder of this section and Appendix B, we formalize this logic.
Consider an economy with a continuum of workers and firms. Each firm employs n

workers, and each worker performs two tasks. Worker i has task-specific skill levels Si1, Si2 ∈
(0, 1].Worker i’s production function is again the simple Cobb-Douglas form: Yi =

√
Si1 × Si2.17

Following Kremer (1993), firm-level output (Z) is the simple product of worker-level output:

Z =
n
∏
i=1
Yi , (5)

where we have abstracted away from capital used in production for simplicity, and because
we are not interested in metrics related to, for example, labor shares.

Skills are distributed jointly log-normal in the aggregate population. Since our focus is on
the correlation in skills, we’ll focus on the simple case where the means (µ) and standard

16We say weakly because, in the case of Leontif production, isoquants have undefined or zero slopes.
17We focus on Cobb-Douglas production in this analysis because the general CES form leads to non-linear

constraints that do not have straightforward analytical solutions.
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deviations (σ) of both skills are equal:

⎛

⎝

lnSi1
lnSi2

⎞

⎠
∼ N
⎛

⎝

µ

µ
,

σ2 corrpopσ2

corrpopσ2 σ2
⎞

⎠
, (6)

where corrpop ∈ (−1, 1) is the population correlation of logged skills.
The multiplicative firm-level structure ensures supermodularity in worker-level output:

∂2Z/∂Yi∂Y j > 0 for i ≠ j. As in Kremer (1993), equilibrium features positive assortative
matching on the scalar index Yi.

Now,we canderive the relationshipbetween thepopulation-level skill correlation (corrpop)
and the within-firm skill correlation, which we’ll denote with corrfirm, after workers sort
into firms. In Appendix B we solve for the equilibrium, within-firm correlation in skills and
obtain:

corrfirm = −exp
⎛

⎝
−
σ2(1 − corrpop)

2
⎞

⎠
< 0 . (7)

In this example, the within-firm skill correlation is always negative regardless of the
population-level correlation. The sharpness of this result stems from the assumptions of
(multiplicative) complementarity among all workers within the firm and perfect positive
assortative matching. As we highlighted above with Figure 5, this leads to firms where all
workers produce on the same isoquant, which, by definition, yields a negative skill correlation.
This is a stark example of “Berkson’s paradox” (Berkson 1946).

Certainly, the presence of substitutable workers within firms or imperfect positive assor-
tative matching across firms would attenuate this effect.18 Thus, in practice, within-firm skill
correlations need not always be negative.

Still, this model highlights the importance of understanding how workers sort into differ-
ent levels of aggregation when predicting skill correlations. Under common scenarios, the
model indicates that as narrower groups of workers are selected for inclusion in an automa-
tion experiment, their skill correlations will become more negative. This, in turn, implies
that the choice of scope for an automation experiment can have an important effect on the
skill correlation of the workers in the experiment and, in turn, the sign of the inequality
effect.

5. Discussion

We have four main results. First, the inequality effects of automation depend on the interac-
tion between skill correlations and the technology’s capability relative to worker skills, rather

18For example, with randommatching, the within-firm and population-level skill correlations will become
equal.
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than on the workforce’s absolute skill level. Second, these effects are often non-monotonic:
as the technology improves, inequality may first decrease and then increase, or vice versa.
Third, the fastest path to equality (with respect to non-automatable tasks) is balanced techno-
logical progress across tasks. Fourth, positive assortative matching within narrowly selected
groups can generate negative, within-firm skill correlations even when the population-level
correlation is positive.

Practically, this all implies that the same automation technology can reduce inequality
in one experimental sample but increase it in another, even if both samples share identical
production functions and individual-level skill distributions, so long as their underlying task-
level skill correlations differ. Moreover, because of the non-monotonic effects of automation
improvements, an experiment showing an inequality reduction today may not imply an
inequality reduction tomorrow. Thus, the mix of seemingly inconsistent results documented
in automation experiments thus far (Table 1) can fully be rationalizedwithout the introduction
of any behavioral biases.19 A pair of seemingly similar automation experiments will vary in
their economic impact because of: (i) the task-level skill correlation of workers, (ii) which
task is (or tasks are) being automated, and (iii) the capability of the automation technology
relative to the workers’ skill levels.

For researchers planning future automation experiments, our framework suggests several
priorities. A checklist of considerations motivated by this model include:

• Document sorting into the experimental population. Our O-ring analysis highlights the
effect that assortative matching can have on skill correlations. Researchers should
be clear to report how workers sorted into the population being sampled for the
experiment.

• Measurement of skill correlations. Skill correlations across workers play a key role in
determining inequality effects. While measuring task-specific skills has historically
been a challenging exercise, making progress on this front will give empiricists an
improved view of the workforce and facilitate better interpretations of the inequality
effects obtained.

• Multiple technology capabilities. Themodel highlights how technological progress leads
to non-monotonicities. Thus, experimenters could begin to forecast trends by testing
for effects using multiple technologies with different capability levels.

• Task “automatability” measurement. Since non-automated tasks drive inequality in our
model, especially in the long run, documenting which tasks are more or less likely to
be automated can improve forecasts beyond the duration of experiments.

Our simple model of automation experiments highlights a unique feature of the work-
force: the correlation of workers’ skills across tasks. While many discussions of emerging

19Of course, that is not to say such biases are irrelevant.
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automation technologies focus on how workers with different levels of skill are affected, we
emphasize here that it is the correlation in skills across tasks that is key for understanding
how automation affects inequality.

The empirical evidence suggests a negative correlation between physical and mental
skills in the population; however, it remains unclear to what extent this is exogenous or an
endogenous result of individuals’ choices about which skills to acquire and when to acquire
them. Digital technologies in the arena of “artificial intelligence” have clearly made a great
leap in the automation of mental skills. Thus, for jobs requiring both physical and mental
skills, our model suggests initial advances in automation will decrease inequality so long as
the task-composition of those jobs remains fixed. Our investigation of SAT math and verbal
scores reveals substantial heterogeneity in cognitive skill correlations across industries and
occupations; however, all correlations are positive. Therefore, for knowledge workers in the
population as a whole, and when technology is not (yet) superhuman, our model predicts
automation will disproportionately help lower-skill workers, decreasing inequality. On the
other hand, thosewith jobs like these oftenfind themselves in teamswhich are highly selected
for a particular skill level, for reasons discussed in our O-Ring model extension. In these
settings it is possible for the effect of automation on inequality to flip, making extrapolations
from the general population to selected teams (or the other direction) problematic. Notably,
whatever the skill correlation, there is a clear prediction of what happens as technology
becomes increasingly superhuman in a subset of tasks — inequality will increase as the
remaining human differences in ability become increasingly magnified.

The model’s simplicity is both a strength and a limitation. By abstracting from general-
equilibrium adjustments, we isolate the direct productivity channel that experiments mea-
sure. This modeling choice makes our predictions directly comparable to experimental
results, but it leaves the model silent on longer-run inequality effects in general equilibrium.
Incorporating skill correlations into macroeconomic models of automation is a natural next
step to explore these broader consequences.

We have also abstracted from heterogeneity in workers’ ability to use automation tech-
nologies effectively. If “skill in using technology” is itself a task and happens to be correlated
with other skills, our model’s predictions would become less clear-cut. Recent experimental
evidence that some workers perform worse with algorithmic assistance than without it (e.g.,
Dell’Acqua et al. 2025; Otis et al. 2025) indicates that this is an important extension to consider
in future work.

More broadly, our framework suggests that the diversity of automation technologies
will play a key role in the evolution of inequality. Technologies that excel at a narrow set
of tasks may amplify inequality by primarily benefiting workers who specialize in those
tasks or in complementary skills. In contrast, technologies with moderate capabilities across
many tasks may compress inequality by helping workers overcome their weakest skills.
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This observation motivates further theoretical and empirical work on how the portfolio of
available automation tools shapes the returns to various skill combinations.

Finally, our focus on task-level production and skill correlations connects to broader
questions about the organization of work. When skills are negatively correlated across work-
ers, firms have an incentive to exploit comparative advantage by assigning each worker to
the tasks where their relative skill is highest. When skills are positively correlated, such
specialization opportunities are limited, since the same workers tend to outperform others
in all tasks. The interaction between skill correlations, automation, and the endogenous
organization of production is a promising direction for future research.

23



References

Acemoglu, Daron, and David Autor. 2011. “Skills, tasks and technologies: Implications for employment
and earnings.” In Handbook of Labor Economics, vol. 4, 1043–1171: Elsevier.

Acemoglu, Daron, and Pascual Restrepo. 2018. “The race between man and machine: Implications
of technology for growth, factor shares, and employment.” American economic review 108 (6):
1488–1542.

Acemoglu, Daron, and Pascual Restrepo. 2019. “Automation and new tasks: How technology displaces
and reinstates labor.” Journal of Economic Perspectives 33 (2): 3–30.

Agarwal, Nikhil, Alex Moehring, Pranav Rajpurkar, and Tobias Salz. 2024. “Combining human exper-
tise with artificial intelligence: Experimental evidence from radiology.”Mimeo.

Agarwal, Nikhil, Alex Moehring, and Alexander Wolitzky. 2025. “Designing Human-AI Collaboration:
A Sufficient-Statistic Approach.”Mimeo.

Athey, Susan C, Kevin ABryan, and Joshua SGans. 2020. “The allocation of decision authority to human
and artificial intelligence.” In AEA Papers and Proceedings, vol. 110: 80–84, American Economic
Association 2014 Broadway, Suite 305, Nashville, TN 37203.

Autor, David H, and Michael J Handel. 2013. “Putting tasks to the test: Human capital, job tasks, and
wages.” Journal of labor Economics 31 (S1): S59–S96.

Autor, David H, Frank Levy, and Richard J Murnane. 2003. “The skill content of recent technological
change: An empirical exploration.” The Quarterly Journal of Economics 118 (4): 1279–1333.

Autor, David, and Neil Thompson. 2025. “Expertise.” Journal of the European Economic Association:
jvaf023.

Baker, Crystal A, Eric Peterson, Steven Pulos, and Rena A Kirkland. 2014. “Eyes and IQ: Ameta-analysis
of the relationship between intelligence and “Reading the Mind in the Eyes”.” Intelligence 44: 78–92.

Bárány, Zsofiá L, and Kerstin Holzheu. 2025. “The Two Faces of Worker Specialization.”Mimeo.
Becker, Gary S, and Kevin MMurphy. 1992. “The division of labor, coordination costs, and knowledge.”

The Quarterly Journal of Economics 107 (4): 1137–1160.
Berkson, Joseph. 1946. “Limitations of the application of fourfold table analysis to hospital data.”

Biometrics Bulletin 2 (3): 47–53.
BLS, (Bureau of Labor Statistics; U.S. Department of Labor). 2024. “National Longitudinal Survey of

Youth 1997 Cohort.”, Center for Human Resource Research (CHRR), The Ohio State University.
Brynjolfsson, Erik, Danielle Li, and Lindsey Raymond. 2025. “Generative AI at work.” The Quarterly

Journal of Economics: qjae044.
Chen, Zenan, and Jason Chan. 2024. “Large languagemodel in creative work: The role of collaboration

modality and user expertise.”Management Science 70 (12): 9101–9117.
Choi, Jonathan H, Amy B Monahan, and Daniel Schwarcz. 2024. “Lawyering in the age of artificial

intelligence.”Minnesota Law Review 109: 147.
Cui, Zheyuan Kevin, Mert Demirer, Sonia Jaffe, Leon Musolff, Sida Peng, and Tobias Salz. 2025. “The

effects of generative AI on high skilled work: Evidence from three field experiments with software
developers.”Mimeo.

Dell’Acqua, Fabrizio, Edward McFowland III, Ethan R Mollick, Hila Lifshitz-Assaf, Katherine Kellogg,
Saran Rajendran, Lisa Krayer, François Candelon, and KarimR Lakhani. 2025. “KnowledgeWorker
Productivity and Quality in Generative AI’s Jagged Technological Frontier: Field Experimental

24



Evidence.”Mimeo.
Deming, David J. 2017. “The growing importance of social skills in the labor market.” The Quarterly

Journal of Economics 132 (4): 1593–1640.
Dessein, Wouter, and Tano Santos. 2006. “Adaptive organizations.” Journal of Political Economy 114 (5):

956–995.
Garicano, Luis, and Luis Rayo. 2025. “Training in the Age of AI: A Theory of Apprenticeship Viability.”

Mimeo.
Girsberger, Esther Mirjam, Miriam Koomen, and Matthias Krapf. 2022. “Interpersonal, cognitive, and

manual skills: How do they shape employment and wages?” Labour Economics 78: 102235.
Guvenen, Fatih, Burhan Kuruscu, Satoshi Tanaka, and David Wiczer. 2020. “Multidimensional skill

mismatch.” American Economic Journal: Macroeconomics 12 (1): 210–244.
Hampf, Franziska, SimonWiederhold, and Ludger Woessmann. 2017. “Skills, earnings, and employ-

ment: Exploring causality in the estimation of returns to skills.” Large-scale Assessments in Education
5 (1): 12.

Kanazawa, Kyogo, Daiji Kawaguchi, Hitoshi Shigeoka, and Yasutora Watanabe. 2025. “AI, skill, and
productivity: The case of taxi drivers.”Management Science.

Katz, Lawrence F, and David H Autor. 1999. “Changes in the wage structure and earnings inequality.”
In Handbook of Labor Economics, vol. 3, chap. 26, 1463–1555: Elsevier.

Kim, Alex, David S Kim, Maximilian Muhn, Valeri V Nikolaev, and Eric C So. 2025. “AI, Investment
Decisions, and Inequality.”Mimeo.

Kleinberg, Jon, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan. 2018.
“Human decisions and machine predictions.” The Quarterly Journal of Economics 133 (1): 237–293.

Kreitmeir, David, and Paul A. Raschky. 2024. “The Heterogeneous Productivity Effects of Generative
AI.”Mimeo.

Kremer, Michael. 1993. “The O-ring theory of economic development.” The Quarterly Journal of Eco-
nomics 108 (3): 551–575.

Lindenlaub, Ilse. 2017. “Sorting multidimensional types: Theory and application.” The Review of
Economic Studies 84 (2): 718–789.

Lise, Jeremy, and Fabien Postel-Vinay. 2020. “Multidimensional skills, sorting, and human capital
accumulation.” American Economic Review 110 (8): 2328–2376.

Maršál, Ales, and Patryk Perkowski. 2025. “A Task-Based Approach to Generative AI: Evidence from a
Field Experiment in Central Banking.”Mimeo.

Mayer, JohnD, RichardDRoberts, and Sigal GBarsade. 2008. “Human abilities: Emotional intelligence.”
Annu. Rev. Psychol. 59 (1): 507–536.

Mullainathan, Sendhil, and Ziad Obermeyer. 2022. “Diagnosing physician error: A machine learning
approach to low-value health care.” The Quarterly Journal of Economics 137 (2): 679–727.

Noy, Shakked, and Whitney Zhang. 2023. “Experimental evidence on the productivity effects of
generative artificial intelligence.” Science 381 (6654): 187–192.

Otis, Nicholas, Rowan Clarke, Solene Delecourt, David Holtz, and Rembrand Koning. 2025. “The
uneven impact of generative AI on entrepreneurial performance.”Mimeo.

Roldán-Monés, A. 2025. “When GenAI increases inequality: Evidence from a university debating
competition.”Mimeo.

25



The Economist. 2025. “How AI will divide the best from the rest.”
Trammell, Philip. 2025. “Workflows and Automation.”Mimeo.
Willis, Robert J, and Sherwin Rosen. 1979. “Education and self-selection.” Journal of Political Economy

87 (5, Part 2): S7–S36.
Woessmann, Ludger. 2024. “Skills and earnings: A multidimensional perspective on human capital.”

Annual Review of Economics 17.
Xu, Fasheng, Jing Hou, Wei Chen, and Karen Xie. 2025. “Generative AI and Organizational Structure

in the Knowledge Economy.”Mimeo.
Zeira, Joseph. 1998. “Workers, machines, and economic growth.” The Quarterly Journal of Economics

113 (4): 1091–1117.

26



Supplementary Appendix

Appendix A. Endogenous Task-level Labor Supply

In the main text, we assume labor is inelastically supplied by all workers at the same cost.
Thus, variation in output (and in turn utility) is governed only by the differences in skill endow-
ments. Here, the objective function of the workers in the case of Cobb-Douglas production
involves no optimization and is simply given by:

(max(At , litSit) × lit−Sit−)
1/2
− 0 where lit = lit− = 1∀i , (A1)

where, as in the main text, we use the notation t to indicate the task being automated and t−
to indicate the non-automated task.

Of course, in reality, workers supply effort at some cost and choose how to allocate that
effort across tasks in accordance with their expectations. One objective function that more
closely captures that reality is:

max
lit ,lit−

(max(At , litSit) × lit−Sit−)
1/2
− (lit + lit−)

2 , (A2)

which introduces a convex cost of (the sum of) effort and yields closed-form solutions for
workers’ optimal choices (l∗it, l

∗

it−) that will depend on their skills and the technology’s capa-
bilities.

Solving for workers’ optimal choices in Equation (A2) using the same scenarios of skill
correlations presented in Table 2 andmirroring the analyses presented in Figure 2 of themain
text still yields the result of non-monotonicity in inequality effects as automation improves.

In the case of positive skill correlations, Figure A1A illustrates a pattern very similar to
the case of inelastic labor shown in Figure 2A. There is an initial decline in output inequality
followed by a long-run increase in output inequality that eventually exceeds the original level
of inequality. The transition appears to occur more quickly (i.e., at lower levels of technology
capability); however, it is difficult to compare the specific values of the objective functions
given that our simple, baseline model has workers facing no costs. Overall, the story remains
the same.

In the case of negative skill correlations, Figure A1B illustrates some patterns that differ
somewhat from our baseline scenario shown in Figure 2B. First, the first-difference and
absolute measures of output inequality never diverge in this case of endogenous labor supply.
This may partly reflect the specific values of the parameters we use here to illustrate the
model — the low type never has enough of an absolute advantage in one task to “overtake”
the high type. A second difference is that, in this case, the automation of both tasks leads to
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non-monotonic inequality paths, whereas in the baseline scenario shown in the main text,
automation of task 2 only ever increases inequality.

Overall, these analyses reveal that our focal result of inequality effects beingnon-monotonic
in the technology’s capability carry through when workers’ endogenously allocate their labor
across tasks.

FIGURE A1
Inequality and Single-task Automation — Cobb-Douglas Production, Endogenous Labor

(A) Positive skill correlation (B) Negative skill correlation

Note: Plots the level of inequality across the two groups of workers assuming Cobb-Douglas
production per first-difference inequality (∆; solid line) or absolute inequality (∣∆∣; dashed
line) depending on skill correlations, the task being automated, and the capability of the
technology. Based on the case of endogenous labor supply per Equation (A2).
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Appendix B. Derivation ofWithin-Firm Skill Correlations

To summarize the O-ring model setup, each firm employs n workers, and each worker i
performs two tasks using their task-specific endowments of skill: Si1,Si2 ∈ (0, 1]. Worker i’s
production function is Cobb-Douglas and uses equal shares of both tasks. Following Kremer
(1993), firm-level output (Z) is the product of worker-level output: Z = ∏ni=1 Yi, which generates
positive assortative matching of workers into firms. Skills are distributed such that:

⎛

⎝

lnSi1
lnSi2

⎞

⎠
∼ N
⎛

⎝

µ

µ
,

σ2 corrpopσ2

corrpopσ2 σ2
⎞

⎠
,

where corrpop ∈ (−1, 1) is the population correlation of logged skills.
With Cobb-Douglas production, Yi = (Si1×Si2)1/2. Within each firm k, all workers produce

output Yk, so Si1×Si2 = Y2k for all workers i in firm k. Taking logarithms of the constraint yields:
ln Si1 + ln Si2 = 2 lnYk. All within-firm variation in logged skills comes from the difference in
logged skill levels, which allows us to write:

Var(lnSi1 − lnSi2 ∣Yk) = Var(lnSi1 − lnSi2)

= 2σ2(1 − corrpop) .
(B1)

Within each firm, we can express each logged skill levels as: ln Si1 = lnYk + (ln Si1 − ln Si2)/2
and lnSi2 = lnYk − (lnSi1 − lnSi2)/2. Therefore:

Var(lnSi1 ∣Yk) = Var(lnYk + (lnSi1 − lnSi2)/2 ∣Yk)

= Var((lnSi1 − lnSi2)/2)

=
σ2(1 − corrpop)

2
,

(B2)

and likewise forVar(ln Si2 ∣Yk). Now, transformingback to levels,wehave Si1 = Yk×exp((ln Si1−
lnSi2)/2) and Si2 = Yk × exp(−(lnSi1 − lnSi2)/2), where (lnSi1 − lnSi2)/2 ∼ N(0,σ2(1 −
corrpop)/2). Therefore:

Var(Si1 ∣Yk) = Y
2
k × exp

⎛

⎝

σ2(1 − corrpop)
2

⎞

⎠

⎛

⎝
exp
⎛

⎝

σ2(1 − corrpop)
2

⎞

⎠
− 1
⎞

⎠
, (B3)

and likewise for Var(Si2 ∣Yk).The covariance is then:

Cov(Si1,Si2 ∣Yk) = Y
2
k ×
⎛

⎝
1 − exp

⎛

⎝

σ2(1 − corrpop)
2

⎞

⎠

⎞

⎠
, (B4)
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and, finally, the within-firm correlation is:

corrfirm =
Cov(Si1,Si2 ∣Yk)√

Var(Si1 ∣Yk) ×Var(Si2 ∣Yk)

=

1 − exp(σ
2
(1−corrpop)

2 )

exp(σ
2(1−corrpop)

2 )(exp(σ
2(1−corrpop)

2 ) − 1)

= −exp
⎛

⎝
−
σ2(1 − corrpop)

2
⎞

⎠
.

(B5)
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