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An increasingly large number of experiments study the labor productivity effects of automa-
tion technologies such as generative algorithms. A popular question in these experiments
relates to inequality: does the technology increase output more for high- or low-skill work-
ers? The answer is often used to anticipate the distributional effects of the technology as it
continues to improve. In this paper, we formalize the theoretical content of this empirical
test, focusing on automation experiments as commonly designed. Worker-level output de-
pends on a task-level production function, and workers are heterogeneous in their task-level
skills. Workers perform a task themselves, or they delegate it to the automation technology.
The inequality effect of improved automation depends on the interaction of two factors:
(1) the correlation in task-level skills across workers, and (ii) workers’ skills relative to the
technology’s capability. Importantly, the sign of the inequality effect is often non-monotonic
— as technologies improve, inequality may decrease then increase, or vice versa. Finally,
we use data and theory to highlight cases when skills are likely to be positively or negatively
correlated. The model generally suggests that the diversity of automation technologies will
play an important role in the evolution of inequality.
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1. Introduction

Recent advances in the capabilities of algorithms have led to a surge of investigations into
the economics of automation technologies. An important, open question is the effect of
these technologies on earnings inequality. Researchers have approached this question using
both macroeconomic and microeconomic methods. In this paper, we are interested in what
can and cannot be learned from the microeconomics.!

Specifically, we focus on the microeconomics of automation experiments: studies that
use exogenous variation in the availability of a technology to estimate productivity effects.
These experiments are valuable because they yield internally valid estimates (typically, in
partial equilibrium) and provide managers and policymakers information about technolo-
gies at a relatively high frequency. In order to estimate inequality effects, experimenters
often test whether the technology increases the output of higher- or lower-skilled workers
with the same job.? In June of 2025, The Economist summarized the inequality effects from
the automation experiments to date: “Although early studies suggested that lower performers
could benefit ... newer studies look at more complex tasks... In these contexts, high performers
benefit far more than their lower-performing peers,” which implies that the skill level of the
workforce is an important feature and suggests a future of skill-biased technical change, as
implied by the article’s title “How AI will Divide the Best from the Rest,” (The Economist 2025).

But what exactly do we learn if we see an automation experiment lead to more, or
less, inequality? What features of the workforce are relevant to the inequality effect? If a
technology increases inequality now, will it continue to increase inequality as it becomes
more capable?

To answer these sort of questions, we provide a new model of automation experiments
where the occupations and workforce are held fixed. The model is in the task-based tradition;
output is increasing in task-level inputs. However, unlike many macroeconomic models of
task-based production, we explicitly model jobs as production functions at the individual
level. Individual workers are defined by their endowments of skill in each task, which
motivates our focus on a feature of the workforce that is rarely highlighted: the correlation
of workers’ skills across tasks. This correlation describes, for example, whether the most
analytical physicians are also the most empathetic, or whether the best fielder on the

The macroeconomic work typically asks: after general equilibrium effects play out, will the new distribution
of jobs and earnings be less or more unequal? The answer appears often is that technologies that reduce demand
for certain types of labor in the short run may increase demand for that labor in the long run, and vice-versa.
For overviews covering historical and current waves of automation, see: Katz and Autor (1999); Acemoglu and
Autor (2011); Acemoglu and Restrepo (2019).

2For examples of automation trials that report inequality results, see: Noy and Zhang (2023); Chen and Chan
(2024); Choi, Monahan, and Schwarcz (2024); Kreitmeir and Raschky (2024); Cui et al. (2025); Brynjolfsson,
Li, and Raymond (2025); Dell'Acqua et al. (2025); Kanazawa et al. (2025); Kim et al. (2025); Otis et al. (2025);
Rolddn-Monés (2025).



baseball team is also the best batter.

We study automation experiments involving either positive or negatively correlated
skills among workers. Automation technologies can perform one (or more) of the tasks in
production, and a technology’s capability may be below or above a given workers’ skill. We
assume rational expectations, so workers only automate (i.e., delegate to the technology) if
the technology’s capability is above their skill.?

The model provides clear predictions about the change in inequality (i.e., the difference
in output between worker types) given a marginal increase in an automation technology’s
capability. Even in simple settings with only two tasks, perfect skill correlations, and single-
task automaton, we obtain results that may seem counter-intuitive at first, but become very
clear through the lens of the model. Changes in inequality do not depend on the absolute
level of workers skill, as the The Economist quote above implies or as intuition might suggest.
It is the interaction of skill correlation and technological capability that determines the
inequality effect.

For example, consider two samples of workers with identical, two-task Cobb-Douglas
production functions and identical, task-levelskill distributions. But in one sample, skills
are positively correlated and, in the other, skills are negatively correlated across workers.
Here, an increase in the capability of a technology that automates one task can decrease
inequality in one sample while increasing inequality in the other.

To illustrate the intuition of this result, consider Figure 1, which reflects this example.
In both cases, the production function and the initial level of inequality (per the difference
in output between high-type H and low-type L) is the same; however, in Panel A, skills
are positively correlated while in Panel B skills are negatively correlated. As, for instance,
Task 1 automation technology improves, the first user will be the low type in the positive
correlated case, but it will be the high type in the negative correlation case. Thus, at least
initially, the low type will benefit first and inequality will decrease in the Panel A case, but
the high type will benefit first and inequality will increase in the Panel B case.

Another interesting result is that the inequality effect need not be monotonic in the
automation technology’s capability. Continuing with the example in Figure 1 Panel A, let’s
again focus on Task 1 automation. As just noted, the low type will be the initial users,
which decreases inequality initially. However, once the technology’s capability surpasses
the high type’s skill and the high type begin usage, output differences will be governed by
differences in Task 2 skills. Now, since the high type is more skilled at Task 2 (and tasks are
complementary), inequality will increase as the Task 1 automation technology improves.

Allowing for multi-task automation yields more interesting patterns. The key result we

3This assumption is not innocuous, as some automation experiments do find workers to perform worse than
placebo when given access to generative algorithms (Dell’Acqua et al. 2025; Otis et al. 2025), which suggests the
presence of biased beliefs.



FIGURE 1
Initial Changes in Output after Automation

(A) Positive skill correlation (B) Negative skill correlation
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Note: Plots isoquants of production possibilities, highlighting the isoquant for a worker
with higher output (Hi) and a worker with lower output (Lo) in two scenarios, where
task-level skills are positively correlated (Panel A) or negatively correlated (Panel B).
Workers pre-automation endowments are shown by the black circles. If a task-specific
automation technology is made available and the technology’s capability exceeds the
workers skill endowment, they will use the technology, which will shift them to a new
production frontier as shown by the arrows. For illustrative purposes, the first worker to
benefit from automation of a given task is highlighted.

find is that the shortest path to equality is when automation improvements are balanced
across tasks. This motivates the potential importance of a diversity of technological advances
when it comes to the pursuit of equality. But importantly, “equality” in our model is possible
only because workers are homogeneous with respect to the non-automatable skills and we
allow for the possibility that technologies’ capabilities surpass all workers. Thus, automation
may ultimately still lead be inequality in practice.

While several dynamics are possible, ours is not an “anything goes” model. When
information is available about workers’ task-level skills and the relative capability of the au-
tomation technology, our model can be use for predicting or extrapolating inequality effects.
Thus, it should prove useful for researchers, organizations, managers and policymakers as
they interpret and design future automation experiments.

While we focus on partial equilibrium and microeconomics, our model suggests some
new insights into the macroeconomics of automation. In particular, the model’s focus on
skill correlations emphasizes the importance of understanding whether the “experiment”
is occurring at the job-, organization-, sectoral-, or societal-level. Existing theory and data



provide some guidance on when and where we should expect skill correlations to be positive
or negative. We discuss this in the latter portion of the paper and report some country-
level skill correlations (based on SAT scores) from the US National Longitudinal Survey of
Youth (BLS (2024)). We also consider a simplified version of Kremer’s (1993) O-ring model
of production to show how skills can be negatively correlated within firms even if they are
positively correlated in the population.

After a brief literature review below, the paper is organized as follows: Section 2 lays
out the model in detail; Section 3 derives results from the model; Section 4 connects our
theoretical results to evidence on skill correlations across the economy and how the level
of aggregation (e.g., firms versus populations) has an effect on these correlations; and
Section 5 concludes with a discussion of our model’s implications, limitations, and possible

extensions.

Related Literature

Our research connects to the literatures on the productivity impact of emerging technolo-
gies, most notably, generative algorithms, theories that model jobs as multi-task production

functions, and the broader economics of automation.

Generative Algorithms and Inequality. Table 1 summarizes the range of recent automation
experiments that have estimated inequality effects due to generative algorithms. As the table
shows, the evidence is decidedly mixed. Our theoretical framework helps rationalize these
seemingly inconsistent findings. Given the rapid pace of algorithmic progress, experimental
results at one point in time may not predict effects as technologies continue to advance.
Moving forward, experiments that measure not only productivity effects but also the task-
level skill correlations among workers and the technology’s capability relative to worker
skills will provide more robust guidance for anticipating distributional consequences.

Jobs as Production Functions. We are not the first to treat jobs as production functions. One
close example is Autor and Handel (2013; see their Eq. 2), which models job-level output as
an exponential function of workers’ task-level skills and job-task-specific elasticities. There,
the focus is not on automation, but rather on predicting job-level sorting. Deming (2017)
considers the complementarity of workers’ math and social skills, but the correlation in
these skills across workers plays no role. Dessein and Santos (2006) also consider jobs as
bundles of tasks, although the focal question is how organizations endogenously decide
which tasks are bundled together. Our model’s highlighting of task-level correlation in skills
should prove useful in future work using worker-level production functions, specifically,



TABLE 1
Inequality Results in Recent Automation Experiments

job methodology megg?ty
Chen and Chan (2024) Ad copywriting RCT )
Choi, Monahan, and Schwarcz (2024) Legal work RCT )
Cui et al. (2025) Coding RCT !
Dell’Acqua et al. (2025) Consulting RCT !
Noy and Zhang (2023)  Professional writing RCT )
Brynjolfsson, Li, and Raymond (2025)  Customer support  Natural Experiment )
Kanazawa et al. (2025) Taxi driving Natural Experiment l
Kim et al. (2025) Investment analysis RCT 1
Otis et al. (2025)  Entrepreneurship RCT 1
Rolddan-Monés (2025) Debating RCT )

Notes: Summarizes recent automation experiments involving generative algorithms.
Studies are sorted based on whether they find automation to decrease (}) or increase
(1) inequality, whether they use a formal randomized controlled trial (RCT) or a natural
experiment, and then alphabetically.

and the division of labor more generally (e.g., Becker and Murphy 1992; Autor, Levy, and
Murnane 2003). We review empirical studies of skill correlations later in Section 4.1.

Automation in General. Related work in the broader economics of automation includes
Athey, Bryan, and Gans (2020), who develop a framework for optimal delegation between
humans and algorithms, and Xu et al. (2025), who study how generative algorithms affects
organizational structure and the allocation of tasks within firms. Trammell (2025) focuses
on the automation of tasks when there is learning-by-doing in a sequence of tasks that
constitute the workflow for a job. Regarding the macroeconomics of automation and in-
equality, Katz and Autor (1999), Acemoglu and Autor (2011), and Acemoglu and Restrepo
(2019) provide comprehensive overviews of how technological change affects the wage
structure through general equilibrium channels. More recently, Autor and Thompson (2025)
examines how generative algorithms affects the returns to expertise, while Garicano and
Rayo (2025) studies implications for training and apprenticeship. Our partial equilibrium
approach abstracts from many of these sort of general equilibrium effects in order to isolate
the direct productivity channel, which yields predictions about which workers benefit from
automation in the short run before labor markets adjust. Extensions of leading general equi-
librium models of automation (e.g., Zeira 1998; Acemoglu and Restrepo 2018) to incorporate
task-level correlations may prove fruitful.



2. Model Preliminaries

Here, we outline our model of jobs as production functions and the automation of tasks. The
tasks of the production functions and the skills of workers are exogenous and fixed. This
short-run, partial-equilibrium view reflects the format of most automation experiments
given their pursuit of internal validity.

2.1. Jobs as Production Functions

There is a single job where each worker i produces a non-negative quantity of some output Y.
The job involves a set of tasks t = {1, 2, ..., T}, and workers inelastically supply a unit of effort
towards each task.* Workers are differentiated by their task-specific skills L;, > 0. Since
labor is inelastic, we can describe each worker’s exogenous (job-specific) skill endowment
across tasks as a vector L; = (L;;, Lig, ..., LiT)-

Output is produced according to a general CES production function:

1/p o-1
Yi:(zt:octht) where p= 5 <1l,02>0, Zt:octzl, (1)

where o is the job-specific elasticity of substitution, and «; are the task-specific input shares.
For simplicity, we assume the job has two tasks (T = 2) with equal input shares («; = 1/2).
This simplifies the production function to:

Y: = (1(L§1+L§2))1 . 2)

For some results, we focus on the edge case of p - 0, which yields the familiar Cobb-
Douglas production function:
Y; = (Ly x Lip)'/2. @)

2.2, Automation Experiments

We model automation experiments as the exogenous offering of a technology that can
automatically perform a task. We denote the capability of the automating technology for
task t as A; > 0. As an input, the automating technology may be worse, equal to, or better

than labor (i.e., A; $ L;;). We assume that workers have rational expectations about the

*In other words, workers are endowed with an amount of labor in each task. An equivalent framing is
that “time-on-task” is fixed. Allowing for endogenous time-on-task, may change the absolute magnitudes of
output levels. But with rational expectations, workers will still allocate their time in a way that is positively
correlated with their relative skill levels. Thus, we expect the levels of inequality, and the exact points at which
the sign of the inequality effects change, to depend on endogeneity of time-on-task. But we do not expect the
non-monotonicity results we obtain below to become monotonic.



technology’s capability; thus, i will rationally choose to use it if At > L;; and not use it
otherwise.
The production function with single-task automation becomes:

1/p

Y; - (%(max(Lit,At)p +18)) )

where t is the task being automated and ¢~ is the other task. When we consider cases where
both tasks are being automated, we will use the max function for both tasks.

2.3. Skill Correlations

We consider the two limit cases for the skill correlation structure, both in which there is
ex-ante (pre-experiment) differences in output levels. There are two groups of workers:
those with initially high output (i = H) and those with initially low output (i = L).° Table 2
summarizes our negative and positive correlation cases, noting that we use the variables C
and B to describe the workers comparative and/or absolute advantages, where 1 < C < B.®

TABLE 2
Skill Correlation Scenarios — Worker (i) and Job Task (t)

positive cort. negative corr.

t=1 t=2 t=1 =2
i=H B BC B 1
i=L 1 C 1 C

Notes: Reports the values of workers’ task-specific skills for the positive and negative
correlation cases; 1 < C < B.

2.4. Inequality Measures and Effects

There are many ways to measure inequality. In practice, one of the most common ways
worker-level output inequality is evaluated is simply the difference in output levels between
workers. The change in inequality is estimated by testing whether workers with high initial
output levels (pre-automation) benefit more or less than workers with low initial output lev-
els. If those initially high-output workers benefit more, inequality is said to have increased,

>This binary categorization is simple, and it reflects the common empirical exercise of proxying for workers’
skills using their pre-experiment output levels to divide them into two groups (e.g., Noy and Zhang 2023; Chen
and Chan 2024; Choi, Monahan, and Schwarcz 2024; Cui et al. 2025; Brynjolfsson, Li, and Raymond 2025;
Dell’Acqua et al. 2025; Kanazawa et al. 2025; Kim et al. 2025; Otis et al. 2025; Roldan-Monés 2025).

®Note this analytical setup differs slightly from the data-generating process used to produce Figure 1. There,
the focus was on ease of visual understand, and here the focus is on analytical tractability.



and vice versa.
As one way of formalizing this, first define A as:

A=Yg(Ar) - YL(Ar),

which provides a directional measure of inequality — below, we’ll also investigate the
absolute value of A as a measure of inequality that is agnostic as to the source of the
differences. This leads us to our main (partial equilibrium) effect of interest:

OAJDA;

which describes how the output gap between workers of groups H and L changes as au-
tomation technologies are introduced and/or improved.

As we discussed in the introduction, many automation experiments motivate a focus
on 0A/0A; with concerns about long-run general equilibrium effects (or, perhaps a latent
preference over short-run inequality). A straightforward critique of this motivation is that,
in the pursuit of internal validity, many of these experiments hold the worker population
and nature of the job fixed — this rules out general equilibrium adjustments (e.g., workers
changing jobs, or employers changing the task composition of jobs).

One intuitive rebuttal to these critiques is to make the assumption that the magnitude or
the of the inequality effect (0A/0A;), should be persistent and informative of the potential
for the technology to affect inequality. Formally, this could stated as an assumption that
0A/0A; is constant, or at least the same sign, as A; increases. We investigate this possibility
by solving for the second derivative, 0%A/0A2.

To further explore heterogeneity, we also solve for the ways in which the inequality effect
depends on: (i) how large the absolute advantage of the high-type workers is, d2A/0Ad(B/C);
and (ii) how substitutable the two tasks are in the production function, aZA/ 0A9dp. Further-
more, we'll investigate the case where both tasks may be automated and illustrate how the
effect of inequality jointly depends on the capabilities of the two technologies, 9%A/0A10A,.

Note that A does not measure absolute inequality. For instance, it could be the case that
automation differentially leads the low type workers to produce so much more output that
the absolute difference in output between workers grows beyond the initial level. Thus, we
also focus our attention on the absolute value of A:

Al = [YH(Ar) - YL(Ar)] .

Across the literature, other common metrics of inequality includes statistics such as the
coefficient of variation or the gini coefficient. These metrics typically involve a scaling of



absolute differences by some measure of aggregate levels.” This scaling is useful for making
comparisons across contexts, since it converts absolute values into relative magnitudes.
However, since we will always be considering the same context in theory, we will rely on
our simpler measures.

3. Model Results

3.1. Single-task Automation

We begin with a focus on the simple case of Cobb-Douglas production and single-task
automation. Figure 2 summarizes the results visually; it illustrates relative and absolute
inequality (per line pattern) as a function of the correlation in workers’ skills (per Panel),
which task is automated (per line color), and the capability of the automation technology

(per the x-axis).

FIGURE 2
Inequality and Single-task Automation — Cobb-Douglas Production

(A) Positive skill correlation (B) Negative skill correlation
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Note: Plots the level of inequality across the two groups of workers assuming Cobb-
Douglas production per relative inequality (A; solid line) or absolute inequality (|A[;
dashed line) depending on skill correlations, the task being automated, and the capability
of the technology.

When workers’ skills are positively correlated, relative and absolute inequality measures

always align (see Figure 2A). Furthermore, regardless of whether task 1 or 2 is automated,

"For example, in our setting, the coefficient of variation is simply: |Yy; — Yz|/( Y + Y1); and the gini coefficient
is simply the coefficient of variation divided by 2.



there will be a non-monotonic relationship between inequality and the automation technol-
ogy’s capability; first inequality declines, then it increases. Initially, the automation helps
the low type “catch-up” to the high-output type. This is because the technology’s capability
is greater than the low type (so, the low type uses the tool), but lower than the high type (so,
the high type relies on their own skill). But eventually, the technology is better than both
types, and the high-types absolute advantage in the non-automated task becomes the key
determinant of output differences and inequality grows due to the complementarity in the
tasks.

In the case of negatively correlated skills, automating task 1 reduces relative inequality
(A) for all technology capability levels, while automating task 2 increases relative inequality
for all technology capabilities (see Figure 2B). Absolute inequality (|A|) always increases
with improvements in task 2 automation; however, this monotonicity does not occur for
absolute inequality as task 1 automation improves. Initially, absolute declines, but when
the technology’s task 1 capability (A;) equals B/C absolute inequality begins to grow again.
At this point, the initially low-output worker types benefit so much from the automation
of task 1 (the task they have both an absolute and comparative disadvantage in) that their
output exceeds that of the initially high-output worker. This divergence of relative and ab-
solute inequality highlights the importance of tracking workers over time in this particular
scenario. For example, cross-sectional analyses of automation experiments may reveal no
change in inequality that mask a re-ordering of workers.

Clearly, the specific points at which these non-monotonic switches in inequality occur
will be context-specific. But overall, the simple Cobb-Douglas case clearly illustrates how
improvements in automation may increase or decrease output inequality depending on
the workers’ skill correlations and the capability of the technology relative to each workers’
skills.

Table 3 generalizes these results to the CES production function. The table reports
the signs of first and second derivatives of absolute inequality with respect to automation
capability, providing a more complete picture of when and why automation’s inequality
effects may reverse.

In all cases, the sign of this second derivative with respect to the technology’s capability
(92|A|/9A?) is opposite to the sign of the first derivative, which stems from the concavity of
the production function. This matters for practice: a firm piloting automation today may
observe inequality changing, and even before the dramatic non-monotonicity occurs, the
rate of change in inequality will decline.

The cross-derivatives with respect to the high-type’s skill advantage (32|A|/dAdB/C)
reveal a few instances where initial skill gaps can amplify automation’s inequality effects.
In the negative skill correlation case, the skill gap (B/C) plays no role in the inequality

10



TABLE 3
Absolute Output Inequality and Automation

tech. . dlA .2 . 2 . A
technology capability sign % sIgn =5 /l;Az‘ sign aAalB/‘c sign aAlaA
Panel (A): Negative skill correlation

A1 1<A1 <A* (—) + (+)
Ay AY <A (+) - -
Ay 1<A) (+) (-) 0 )
Panel (B): Positive skill correlation

Ay 1<A;<B (-) (+) 0 (£)?
A B<A (+) (-) (+) )
Ay C<Ay;<BC (=) (+) 0 (-)
Ay BC <A (+) (-) (+) (-)

Notes: Reports the sign of the first and second derivatives of the absolute inequality
effect (0|A|) for the general CES production function with automation depending on
whether workers’ skills are negatively correlated (Panel a) or positively correlated (Panel
b). A* = (B + 1- CP)Y/P. (+)2: sign is positive if A < C and negative if C < A < B.

effect of automation. However, this derivative is positive in the positive correlation case
once technology’s capabilities exceeds both workers’ skills — a larger pre-existing skill gap
means automation will increase inequality more sharply. For organizations considering
automation, this implies that the same technology will have different distributional conse-
quences depending on how heterogeneous the workforce is to begin with. A narrow skill
distribution may mute inequality changes; a wide distribution may amplify them.

The cross-derivatives with respect to task complementarity (32|A|/0Adp) indicate whether
automation’s effect on inequality is amplified or not in jobs with more substitutable tasks
(p = 1). In the case of negative skill correlation, task substitutability behaves just as the sec-
ond derivative; more substitutability mutes the inequality effect. With positively correlated
skills, the cross derivative is negative for most technological capabilities, which amplifies
inequality effects at low capability levels but depresses them at higher capability levels.

Practically, these comparative statics tell us that predicting automation’s inequality
effects requires knowing not just current worker skills and technology capabilities, but also
the job’s production structure and the trajectory of technological improvement. Interest-
ingly, these exercises of improving technology’s capabilities for a single task at a time all
predict that inequality will, in partial equilibrium, eventually increase in the long-run (i.e.,

At g OO)
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3.2. Multi-task Automation

Returning to the Cobb-Douglas formulation for simplicity, Figure 3 extends the analysis
to consider automation of both tasks, revealing how the composition of automation tech-
nologies shapes inequality outcomes. Each panel plots absolute inequality compared to
the pre-automation period as a function of both technologies’ capabilities. The contrast
between panels highlights how skill correlations determine not just whether inequality
rises or falls, but which combinations of technologies prove most equalizing.

In both cases, there is convergence to zero inequality when automation is sufficiently
advanced; however, we note again the fact that our model assumes workers are homoge-
neous with respect to non-automatable tasks (since there are none in our model). This
is an important abstraction. Until the economy achieves full automation, there will be
non-automated tasks, so the “equality” we arrive at should be understood as representing
the amount of inequality determined by all non-automated tasks.

FIGURE 3
Absolute Inequality and Multi-task Automation — Cobb-Douglas Production

(A) Positive skill correlation (B) Negative skill correlation

|A]=0
full automation

[A]=0

full automation

task 2 technology capability (A,)
task 2 technology capability (A,)

1A, <14
Al <]A,|
Al <]A |
el il <14
task 1 technology capability (A,) task 1 technology capability (A,)

Note: Plots the level of absolute inequality (|A|) compared to the initial, pre-automation
level of absolute inequality (defined here as: |Ay|) depending on skill correlations and
the capability of both automation technologies. The results here assume Cobb-Douglas
production, and the orange areas indicate regions where neither technology has been

adopted (i.e., |A| = |Ao))-

With that caveat in mind, Figure 3 reveals the asymmetric paths to equality. When
automation advances differentially across tasks, inequality remains or grows — the technol-
ogy portfolio is unbalanced relative to workers’ skill distributions. This illustrates how the

12



balance of technological capabilities is relevant to inequality. As more tasks are automated,
the dimensionality along which workers differ shrinks, and inequality increasingly reflects
skill differences in the remaining non-automated tasks.

With positive correlation (see Figure 3A), much of the capability space involves decreases
in inequality compared to pre-automation periods. Effectively, technologies are always
helping the low type catch up. Only if the task 2 technology has very low capability and task
1 technology has very high capability can inequality exceed the pre-automation period.

With negative correlation (see Figure 3B), there is a much greater opportunity for
increases in inequality. The intuition follows from the single-task results: when skills are
negatively correlated, different workers are disadvantaged in different tasks, so equalizing
outcomes requires helping both types of workers. A technology suite that is very capable
in task 1 helps low-types, leaving low-types’ comparative advantage in task 2 intact, which
remains a (potential) source of inequality.

4. Skill Correlations

The previous section highlighted the importance of understanding skill correlations in
the workforce of interest. Here, we review the empirical studies that have estimated skill
correlations (Section 4.1), present new evidence on the distribution of skill correlations
across sectors (Section 4.2), and show how positive assortative matching in an O-ring model
of production (i.e., Kremer 1993) can generate negative skill correlations within firms even
when the population exhibits a positive skill correlation (Section 4.3).

4.1. Existing Estimates of Skill Correlations

At least since Willis and Rosen (1979), it has been appreciated that a single index of workers’
skill will abstract away from important variation in the labor supply. However, empirical
estimates of workers’ skills on specific types of tasks remains a relatively challenging pursuit.
Approaches to date typically involve accessing confidential data, intense measurement, or
the estimation of structural models of labor supply.

Most studies examining multi-dimensional skills have focused on relatively aggregate
categories: cognitive skills, social skills, and manual skills. While these categories may
be much broader than the connotation of the “tasks” in our model, the logic is the same.
Furthermore, these studies generally focus on large populations of workers (e.g., national
statistics).

Broadly speaking, among these three categories of skills, cognitive and social skills
show the most positive correlation. Estimates of the correlation in these skills spans from
approximately 0.1 up to 0.7 (Mayer, Roberts, and Barsade 2008; Baker et al. 2014; Deming

13



2017; Guvenen et al. 2020; Lise and Postel-Vinay 2020; Girsberger, Koomen, and Krapf 2022;
Barany and Holzheu 2025). Cognitive and manual skills exhibit negative to weakly positive
correlations, roughly in the range of -0.4 to 0.1 (Lindenlaub 2017; Lise and Postel-Vinay 2020;
Barany and Holzheu 2025). Social and manual skills consistently show the most negative
correlations of these categories, on the scale of -0.4 to -0.6 (Lise and Postel-Vinay 2020;
Girsberger, Koomen, and Krapf 2022; Barany and Holzheu 2025). Within the cateogry of
cognitive skills, data persistently reveal a strong positive correlation, for example, of approx-
imately 0.7 across mathematical skills and literacy (or verbal) skills (Hampf, Wiederhold,
and Woessmann 2017; Guvenen et al. 2020; Woessmann 2024).

4.2. SAT Score Correlations across the Economy

As noted above, prior work has generally found mathematical and verbal skills to be pos-
itively correlated per standardized tests. A common source of data used is the National
Longitudinal Survey of Youth (NLSY), which reports participants’ SAT scores for verbal and
math components separately (BLS 2024). Here, we also make use of this data, but report
the math-verbal skill correlation separately for alternative industries and occupations. We
use the most commonly listed industry and occupation codes for all employed individuals.
The public data yield 1,618 observations with both math and verbal SAT scores as well as
non-missing industry and occupation codes.?

Overall, math and verbal SAT scores in our sample exhibit a correlation of 0.61, which is
squarely in-line with the estimates summarized in the previous subsection. But our primary
goal is to shed some initial light on portions of the economy where skills (at least per this
metric) may be more or less correlated.

Figure 4 highlights that the strength of the math-verbal score correlation varies signifi-
cantly across the economy.

Workers in some place exhibit a tight link between these skills, with estimated corre-
lations approaching 0.8 (e.g., professional and administrative services, food preparation,
cleaning and building services). While in other places the association is much more modest,
on the order of 0.3 to 0.5 (e.g., information sector, legal services). At the granular level of
industry-occupation pairs, we find substantial dispersion in math-verbal correlations (see
Panel C).

Notably, we do not observe any industry and/or occupation where the correlation is
estimated to be negative. Still, our model suggests that the the heterogeneity in skill cor-

8For simplicity and to preserve sample size, we aggregate the industries and occupations into levels slightly
broader than listed in the data. SATs are graded out of 800 for each of the two components. For confidentiality,
the scores are aggregated into 100 point bins in the public data, which are what we use in this analysis. All
correlations are reported per the inclusion of the NLSY97 sample weights, although this makes little practical
difference.
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FIGURE 4

Math and Verbal SAT Score Correlations across the Economy
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Note: Plots the correlation of individuals’ SAT scores on the verbal and math components
from the NLSY97. Panels (A-B) plot average correlations at the industry- (Panel A) or

occupation-level (Panel B). Panel (C) plots the distribution of correlations averaged at the
industry-occupation-level.

relations across the economy would also imply heterogeneous effects of automation on
inequality. That is, a single automation technology deployed in these different sectors could
yield significantly different changes in inequality.

More speculatively, the uniformly positive correlations help reconcile the fact that, as
of this paper, the majority of automation experiments are documenting inequality defines.
Presently, many of the technologies in question are both: (i) not yet “super-human” in that
they are better than the worst workers, but not better than the best workers; and (ii) focused
on cognitive tasks, in particular, connected to software. Combined with positive (cognitive)
skill correlations, our model predicts an inequality reduction in this scenario.

However, the positive math-verbal skill correlations we document here reflect sorting
into broad economic sectors and may mask negative correlations at finer levels of analysis
within firms or teams where complementary specialization drives task allocation.

4.3. An O-Ring Model with Two Tasks

The evidence in the prior section largely describes skill correlations in the aggregate (e.g.,
country-level). However, the focus of many automation experiments is there effect on
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inequality within firms. Thus, we want to predict how the sorting of workers into firms may
lead the within-firm skill correlation to diverge from the population correlation. To do so, we
extend Kremer’s (1993) O-ring model of production to the case where workers perform two
tasks. This is related to automation experiments as it will emphasize how skill correlations
(which drive inequality effects) can depend on the level of the workforce involved in the
experiment (e.g., a business unit, a department, a firm, a sector, etc.). The model is similar
to our focal model described in Section 2, although we make some additional assumptions
in order to simply incorporate worker sorting and firm-level production.

The intuition of this model can be seen clearly through Figure 5. We've re-drawn the
isoquants from Figure 1, but now highlight the case where there are two workers of each
type (high-output Hi and low-output Lo). If firms consist of two workers and there is positive
assortative matching (a la Kremer 1993), then workers of the same type will join. Then,
because workers of the same type lie on the same isoquant in this stylized example, there will
be a (perfectly) negative skill correlation within each of the two firms.® Next, we formalize
this logic.

FIGURE 5
Skill Correlations and Assortative Matching

Task 2

Task 1

Note: Plots isoquants of production possibilities, highlighting the isoquant for workers
with higher (Hi) or lower output (Lo). Workers are chosen to illustrate a scenario where
skills are positively correlated in the population (including all four workers). Since there
are only two types of workers (and each type exists on the same isoquant), positive
assortative matching in the context of two-worker firms will generate a negative within-
firm skill correlation.

Consider an economy with a continuum of workers and firms. Each firm employs
n workers, and each worker performs two tasks. Worker i has task-specific skill levels

9Conversely, negative assortative matching yields positive within-firm skill correlations in Figure 5.
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L;1, L € (0,1]. Worker i’s production function is again the simple Cobb-Douglas form:
Y; = /Lj x Lj,.1? Following Kremer (1993), firm-level output (Z) is the simple product of
worker-level output:

z=11Y;, (5)

where we have abstracted away from capital used in production for simplicity, and because
we are not interested in metrics related to, for example, labor shares.

Skills are distributed jointly log-normal in the population. Since our focus is on the
correlation in skills, we’ll focus on the simple case where the means (1) and standard
deviations (o) of both skills are equal:

InL; o? COTTpop 02

InL;, L COTTpop o? o

where corrpop € (—1,1) is the population correlation of logged skills.

The multiplicative firm-level structure ensures supermodularity in worker-level output:
0%z /0Y;0Y; > O for i # j. As in Kremer (1993), equilibrium features positive assortative
matching on the scalar index Y;.

Now, we can derive the relationship between the population-level skill correlation
(corrpop) and the within-firm skill correlation, which we’ll denote with corrg,,,, after workers
sort into firms. In Appendix A we solve for the equilibrium, within-firm correlation in skills
and obtain:

02(1 ~ COTTpop) <0 @
— .

COTTfiym = — €XP (—

In this example, the within-firm skill correlation is always negative regardless of the
population-level correlation. The sharpness of this result stems from the assumptions of
(multiplicative) complementarity among all workers within the firm and perfect positive
assortative matching. As we highlighted above with Figure 5, this leads to firms where
all workers produce on the same isoquant, which, by definition, yields a negative skill
correlation.!!

Certainly, the presence of substitutable workers within firms or imperfect positive
assortative matching across firms would attenuate this effect.!? Thus, in practice, within-

firm skill correlations need not always be negative. Still, this highlights the importance

We focus on Cobb-Douglas production in this analysis because the general CES form leads to non-linear
constraints that do not have straightforward analytical solutions.

In a sense, this is an example of Simpson’s paradox arising due to matching.

2For example, with random matching, the within-firm and population-level skill correlations will become
equal.
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of understanding how workers sort into different levels of aggregation when predicting
skill correlations. This, in turn, implies that the scope of an automation experiment can
have an important effect on the skill correlation of the workers in the experiment. Further
exploration of worker sorting and firm-level production that accounts for these sorts of
effects on skill correlations could prove useful.

5. Discussion

We have four main results. First, the inequality effects of automation depend on the inter-
action between skill correlations and the technology’s capability relative to worker skills,
rather than on the workforce’s absolute skill level. Second, these effects are often non-
monotonic: as the technology improves, inequality may first decrease and then increase,
or vice versa. Third, the fastest path to equality (with respect to non-automatable tasks) is
balanced technological progress across tasks. Fourth, positive assortative matching can
generate negative, within-firm skill correlations even when the population-level correlation
is positive.

Practically, this all implies that the same automation technology can reduce inequality
in one experimental sample but increase it in another, even if both samples share identical
production functions and skill distributions, so long as their underlying skill correlations
differ. Moreover, because technology capabilities improve rapidly, an experiment showing
an inequality reduction today may not imply an inequality reduction tomorrow.

For researchers planning future automation experiments, our framework suggests
several priorities. First is the measurement of the correlation structure of participants’
skills across tasks. Second is the technology’s capability, not just in absolute terms, but
relative to worker skill on each task.

Our simple model of automation experiments highlights a relatively unique feature of
the workforce: the correlation of workers’ skills across tasks. While many discussions of
emerging automation technologies focuses on how workers with different levels of skill are
effected, we emphasize here that it is the correlation in skills across tasks that is key for
understanding how automation affects inequality.

The model’s simplicity is both a strength and a limitation. By abstracting from general-
equilibrium adjustments, we isolate the direct productivity channel that experiments mea-
sure. This modeling choice makes our predictions directly comparable to experimental
results, but it leaves the model silent on longer-run inequality effects in general equilibrium.
Incorporating skill correlations into macroeconomic models of automation is a natural
next step to explore these broader consequences.

We have also abstracted from heterogeneity in workers’ ability to use automation tech-
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nologies effectively. If “skill in using technology” is itself a task and happens to be negatively
correlated with other skills, our model’s predictions would become less clear-cut. Recent
experimental evidence that some workers perform worse with algorithmic assistance than
without it (e.g., Dell’Acqua et al. 2025; Otis et al. 2025) indicates that this is an important
extension to consider in future work.

Empirically, our investigation of SAT math and verbal scores of reveal substantial het-
erogeneity in cognitive skill correlations across industries and occupations; however, all
correlations are positive. In domains where skills are positively correlated and the technol-
ogy is not (yet) superhuman, our model predicts automation will disproportionately help
lower-skill workers, compressing inequality. This is what most automation experiments
focused on generative technologies have found to date. But as technologies improve toward
and eventually beyond the highest human skill levels, our model predicts that their impact
on inequality could reverse, with inequality beginning to rise.

More broadly, our framework suggests that the diversity of automation technologies
will play a key role in the evolution of inequality. Technologies that excel at a narrow set of
tasks may amplify inequality by primarily benefiting workers who specialize in those tasks
or in complementary skills. In contrast, technologies with moderate capabilities across
many tasks may compress inequality by helping workers overcome their weakest skills.
This observation motivates further theoretical and empirical work on how the portfolio of
available automation tools shapes the returns to various skill combinations.

Finally, our focus on task-level production and skill correlations connects to broader
questions about the organization of work. When skills are negatively correlated across
workers, firms have an incentive to exploit comparative advantage by assigning each worker
to the tasks where their relative skill is highest. When skills are positively correlated, such
specialization opportunities are limited, since the same workers tend to outperform others
in all tasks. The interaction between skill correlations, automation, and the endogenous
organization of production is a promising direction for future research.
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Appendix A. Derivation of Within-Firm Skill Correlations

To summarize the O-ring model setup, each firm employs n workers, and each worker i
performs two tasks using their task-specific endowments of skill: L;;, L;, € (0,1]. Worker
i’'s production function is Cobb-Douglas and uses equal shares of both tasks. Following
Kremer (1993), firm-level output (Z) is the product of worker-level output: Z = 1'[?:1 Y;, which
generates positive assortative matching of workers into firms. Skills are distributed such

that:
( InL; ) N ( 8 o? COTTpop o? )
InL;, w’ COTTpop 2 o? ’
where corrpop € (-1, 1) is the population correlation of logged skills.
With Cobb-Douglas production, Y; = (L;; x Liz)l/ 2, Within each firm k, all workers
produce output Yy, so L;; x L,y = Ylf for all workers i in firm k. Taking logarithms of the

constraint yields: InL;; + InL;» = 21nY}. All within-firm variation in logged skills comes
from the difference in logged skill levels, which allows us to write:

Var(InL; -InL;,|Y;) = Var(InL; —InL;,) (A1)
=20%(1- CorTpop) -

Within each firm, we can express each logged skill levels as: InL;; =InY, + (InL;; -InL;5)/2
andInL; =InY, - (InL; —InL;y)/2. Therefore:

Var(InL;; |Yy) = Var(InY, + (InL;; -InL;») /2| Y})
=Var((InL;; -1nL;y)/2)
o%(1- COTTpop)
-
and likewise for Var(InL;, |Y;). Now, transforming back to levels, we have L;; = Y} x
exp((InL;; —1nL;y)/2) and L;, = Y x exp(—(InL;; —InL;»)/2), where (InL;; —1nL;5)/2 ~
N(0, 0%(1 - corrpop)/2). Therefore:

2 2
0° (1~ corr, 0“(1 - corr;
Var(L;; |Yy) = Y,? X exp (%) (exp (%) - 1) , (A3)
and likewise for Var(L;, | Y;).The covariance is then:
9 o2(1- COTTpop)
COV(Lil, Li2 | Yk) = Yk x|1- exp —2 5 (A4)
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and, finally, the within-firm correlation is:
Cov(Liy, Lip | Yy )
V/Var(Ly | Yy) x Var(Lyp | V)

1-exp (_02(1—620”fp0p) )

COTTlrm =

B exp ( 02(17c20rrpop)) (exp ( O'Z(I*CZOTTpOp)) B 1)

2
1-
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